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o Variational autoencoders is the neural network implementation of the ELBO

ELBO = 𝔼𝑞𝝋 𝒛|𝒙 log 𝑝𝜽(𝒙|𝒛) − KL 𝑞𝝋(𝒛|𝒙) ∥ 𝑝(𝒛)

o In the standard case the approximate posterior is Gaussian 𝑞 𝒛|𝒙 = 𝒩(𝒛; 𝜇𝒛, 𝜎𝒛)

Variational autoencoders

Deterministic transformation (any neural network)
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o The encoder is any standard neural network
◦ Modelling the approximate posterior 𝑞 𝒛|𝒙

◦ Remember: given input 𝒙 we have a distribution over latent 𝒛 (not single value)

◦ The KL term KL 𝑞(𝒛|𝒙) ∥ 𝑝(𝒛) encourages the posterior to not deviate too 
much from the prior 𝑝(𝒛)

o For Gaussian 𝑞 𝒛|𝒙 we need two neural networks for two outputs 𝜇𝒛, 𝜎𝒛
◦ The 𝜇𝒛 is a neural net encoding the mean of 𝒛 given 𝒙

◦ The 𝜎𝒛 is a neural net encoding the stdev of 𝒛 given 𝒙

◦ The two neural nets can share architecture before the outputs

Encoder/inference network ⇔ approximate posterior
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o The decoder model is also a neural network
◦ It receives a stochastic input 𝒛 and returns as output a generation

o The output modelled with a distribution according to the data type
◦ For continuous values could be a Gaussian

◦ For binary values Bernoulli distribution

o With generative models often convenient to think of the generation process
◦ Then the encoder is the variational approximation to ensure tractability

o Check the graphical model
◦ Sample 𝒛~𝑝(𝒛) from the prior

◦ Given 𝒛 generate 𝒙~𝑝(𝒙|𝒛)

Decoder network ⇔ generative model
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o The prior distribution acts as a regularizer

o The prior 𝑝(𝒛) is often the unit Gaussian 𝑝 𝒛 ~𝒩(0, 1)

o If we expect/desire different nature of 𝒛, e.g., sparsity or binary latents
◦→ pick a different prior

◦ The sampled 𝒛 will be from that prior

◦ The KL term will regularize the encoder to be close to the prior

Prior distribution
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o The variational autoencoder is two neural networks with inputs or outputs 
that are stochastic (represented by distributions, not single values)

o We must train the neural networks
◦ I.e., fit good parameters 𝜽 and 𝝋 for the decoder

o Objectives:
◦ We want to predict to good distributions for 𝒛 for (seen & unseen) inputs 𝒙

◦ We want on average our approximate posterior to be close to the prior

◦ We want to reconstruct inputs well

◦ We want generations that look ‘real’ → good extrapolations

Learning the variational autoencoders
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Interpolation in the latent VAE space
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o Maximize the ELBO

ℒ 𝜽,𝝋 = 𝔼𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑍) − KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

= න
𝒛

𝑞𝝋 𝒛 𝒙 log 𝑝𝜽(𝒙|𝒛) 𝑑𝒛 − න
𝒛

𝑞𝝋 𝒛 𝒙 log
𝑞𝝋(𝒛|𝒙)

𝑝(𝒛)
𝑑𝒛

o Normally you derive the math between each integral
◦ Good exercise: derive the ELBO for Gaussian latents and Bernoulli outputs

o Often, the integrals make some terms intractable. How to train?
◦ Backpropagation with Monte Carlo (MC) averaging 

◦ Forward propagation means evaluating the two terms

◦ Backpropagation → compute gradients with respect to the 𝜽 and 𝝋

Training Variational Autoencoders
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ℒ 𝜽,𝝋 = න
𝒛

𝑞𝝋 𝒛 𝒙 log 𝑝𝜽(𝒙|𝒛) 𝑑𝒛 − න
𝒛
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o The first term is an integral (expectation) that we cannot solve analytically

◦ Sample from the approximate posterior 𝑞𝜑 𝒛 𝒙 instead and do MC average

◦ Pick a 𝑝𝜽(𝒙|𝒛) that couples well with log

o With a ‘low variance estimator’ a single sample 𝒛 is enough
◦ Stochasticity is desirable → reduces overfitting

o Reparameterization trick for low variance estimation

Training reconstruction term
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ℒ 𝜽,𝝋 = න
𝒛

𝑞𝝋 𝒛 𝒙 log 𝑝𝜽(𝒙|𝒛) 𝑑𝒛 − න
𝒛

𝑞𝝋 𝒛 𝒙 log
𝑞𝝋(𝒛|𝒙)

𝑝(𝒛)
𝑑𝒛

o The second term is an integral which corresponds to KL distance

o For known distributions, e.g., both 𝑞𝝋 𝒛 𝒙 and 𝑝(𝒛) Gaussians, the KL often 

reduces to a closed formula → very convenient
◦ E.g., compute the KL divergence between a centered 𝑁(0, 1) and a non-centered 
𝑁(𝜇, 𝜎) gaussian

o If closed formula not easy, MC averaging with sampling from 𝑞𝝋 𝒛 𝒙 is possible

Training KL regularization term


